Screaming Circuits: QFN and DFN


Choose Your Package Wisely

As I mentioned in my prior blog, there are reasons to consider different packages than just physical size.

Sometimes it is just space available on the PC board, but there may be other considerations as well. One of the first to consider with really small size packages, is the capability of your manufacturer. Not all assembly service providers can TI ESD CSP 007 croppeddeal with super-duper small parts.

That's a paperclip next to the little ESD protection chip in the photo on the left. At Screaming Circuits, we can go down to 0201 passive parts and 0.4 mm pitch BGAs. We've even done a few 0.3mm pitch BGAs, but those are pretty rare still.

Some manufacturers stop at 0402 (or even 0603) parts. If that's the case with your manufacturer, then you'll need to eliminate sizes smaller than their limit (or find someone else to build the board).

Cost might also come into play. It probably won't be enough of a factor to worry about during prototyping, but it may be worth looking at for volume production. Sometimes the smaller form-factors add cost. Sometimes the part value you need may not even be available in the smallest packages.

TI TPS62601 front and backIf both cost and size are significant drivers, weigh the cost savings from reducing the PC board area against any additional cost with smaller packages.

Noise can factor into your package choice too - especially regarding bypass capacitors on high speed chips. You want your bypass capacitors as close to the power and ground pins as possible. The higher the speeds, the more important this is. Dropping your package size down to 0402 or 0201 can make it easier to put the caps closer to power and ground pins.

Duane Benson
You don't need to ask Alice because your parts aren't ten feet tall

QFN? QFP? QFwhat?

The QFN (quad flat pack, no leads) has become my favorite integrated circuit package. It's very compact, yet is easier to use than a micro BGA.

Micro BGAs of 0.5mm and smaller pitch become a bit more difficult and costly with more than two rows of pins. At those geometries, escape routing can involve plugged and plated vias which adds complexity and cost to the board fab. QFNs can be almost as small, but have all of the pins exposed around the edges - so, no need for escape routing.

One thing that's important to note, is that despite sharing the first two letters (Q and F), the QFP and QFN footprints are not interchangeable. We do, from time to time, see boards laid out for one along with the other form packaged part. Arduino w QFN and QFP

Take a look at this PCB layout clip from the Arduino Leonardo. It has both footprints on the board. You can see how much bigger the QFP package is.

They put down both footprints because the Atmega32U4 chip used in the Leonardo sometimes has supply issues in one package or the other. This gives them the flexibility to use either without making any changes on the board.

You might consider this as an option if you have the space for a QFP and are concerned about the available of one package variant or the other.

If you do, there are some very important things to check out:

  • Make sure the pin-outs match. Some parts will vary the pin-out a bit between packages or have extra pins on one or the other.
  • Make sure the extra space won't cause noise problems. Generally, you want bypass caps as close as possible to the supply pins. This amount of extra space probably won't be a problem when using a QFN, but in some designs, it might.
  • Make sure the board won't be in an environment where unsoldered pads will be a problem. Some harsh environments could attack the unsoldered pads. If that's the case, consider conformal coat.

Duane Benson
We're always being pushed and shoved by people trying to beat the clock
But we like it - it's what we do

Super Small Via In Pad

Via in pad is an old issue that still pops up now and then. Our standard answer hasn't changed: No open vias in pads. But one of the questions we get related to the subject is: "What if we make the vias really small?"

Beagleboard U6 viasLogically, that makes sense. In fact, in some cases, the via is so small that it's essentially closed. If it's so small that it really is closed, then it's not an open via. But look close - if it's closed with solder, that solder may melt during reflow leading to an open via.

The images here show some pretty small vias. I believe they're 0.3 mm in diameter.

Beagleboard vias back sideIn the first picture, on the left, it appears that the vias are open. They aren't though. This board (an unstuffed Beagleboard) uses soldermask on the back side of the PCB to close off the vias, as shown in the image on the right.

Our recommended method (se more detail here and here) is to plug the via with copper or epoxy and have it plated over at the board fab house. Next, we'd recommend via caps on the component side. FInally, capping the back side with soldermask, like this example can work, but it comes with the risk of voids. The via caps and also pop open, leading to an open via.

Duane Benson
No more open vias-in-pad, I mean it!
Anybody want a peanit?

Creating a QFN Footprint - the center pad

I've written bits and pieces about creating footprints in Eagle and a lot about what the QFN solder paste layer should look like, so maybe it's time to connect the two dots. I'm using Eagle CAD here, so your process will likely be different unless you're using Eagle, but the concept should be the same. This process takes place in the package section of the Library editor. I'm assuming that you're already part way through and just need to put in the center pad.

Center pad Center pad position and sizeFirst, add the center pad to your QFN using the "Smd" tool and set the size based on the recommended pad size specified in your part datasheet.

The center of the pad should be located at 0,0 unless you have a QFN with odd shaped or multiple pads.

Make sure you un check the "Cream" box in the lower left corner as we'll be doing that manually.

After the pad is there and sized right, you need to add in the cream (solder paste) layer. You'll be drawing the cut-outs in the stencil with the rectangle tool. Use the rectangle tool to draw the stencil cut-outs. Set the rectangle to the "Cream" layer. In my installation of Eagle, the Cream layer defaults to layer 31.

Most parts should get 50 - 75% paste coverage to prevent floating (read this for more details). If your Stencil rectangle Stencil rectangle position and sizepart datasheet gives a specific number, use that. However, in my experience, most part datasheets just show a wide open stencil with 100% paste coverage. Unless you have good reason, don't do that.

Without any specific guidance, I usually aim for about 70%. In high volume manufacturing situations, the manufacturing engineers will likely spend time tweaking the coverage, but it'll be close and for a prototype, 70% is a good number.

Duane Benson

More Beagle CAD Paws

Continuing on from my last post...

As I said, I do everything I can to avoid re-using the package footprint when adding the the parts library in Eagle CAD. The schematic symbol can be a different story though. It still takes a lot of caution, but it's less risky (in my opinion) than reusing the package footprint.

Eagle version 6 made some improvements in the way copy and paste works. It's still a little different from your typical word processor, but it's not that difficult.

Eagle footprint menu bar 3 buttonsBut before I get to that, I want to mention one item that caused me a fair amount of confusion early on. And that's the way all of this fits together. There are three buttons you will need to worry about. From left to right in the green oval are; the device, the package footprint, and the schematic symbol. In my last post, I pointed out the package footprint and today I'm talking about the schematic symbol.

Really, you only build the footprint and the schematic symbol. Then you connect the two up to create the devices. And, you can build the footprint or schematic symbol in either order, but you have to have them both before the last step (the icon in the green oval with four little AND gates).

If you're using a chip that comes in a couple of different packages (e.g. DIP28, SOIC28, TSSOP28) you most likely only need to make one schematic symbol. You can make the multiple footprints and connect them up in the device section as different variants of the same part.

There are a few exceptions though. Sometimes QFN, QFP or BGA parts will have a few extra pins. In those cases, it may be better to create a different schematic symbol.

Duane Benson
This solder paste stencil glows blue when goblins are around

Beagle CAD paw prints

Unfortunately, I can't generically hand out Eagle CAD QFN footprints without knowing the specific part, but I can illustrate the areas I initially had difficulty with. All of the traps that used to get me seem blindingly obvious now, but they weren't when I first tried to make my own library parts.

The very first thing I would recommend is to make your own library file. When I started in with my own parts, I would just add them to an existing library. For example, I'd put a new Microchip PIC processor into the "microchip.lbr" library. It seemed the logical choice because there are other similar parts to start with. But, when it's time to upgrade, migration of those custom parts becomes a nightmare. So, now all of my custom parts go into "dfb-parts.lbr."

Eagle footprint menu barSpeaking of modifying existing parts, another recommendation I have is, except for parts where the package footprint is EXACTLY the same, start from scratch with the package footprint.

The schematic symbol is easier to reuse - just make sure you have the right pins in the right place - but subtle differences in the copper footprint can have a big difference at the assembly stage.

Datasheet footprint page land patternI also don't try to hand size and hand position the pads on the silk screen. Start by just putting a pad in the footprint area. The use the Properties/Info button (the big "i") and use the dimensions given in the data sheet to enter the size and position by number.

Look for the "recommended land pattern" or similar diagram toward the end of the component datasheet. Entering the numbers in the Properties/Info box will bypass any position precision issues. Just make sure that you use the right units (i.e. metric to metric).

Stay tuned for the next installment.

Duane Benson
World to end at 9:30. Details at 11:00

More CAD footprint woes

AT this point, I really shouldn't call them "woes." More like business as usual. I'm talking about the need to make custom footprints, or at leas modify footprints. Back in the old days, the only thing needed to make footprints was some copper pds, maybe plated through, maybe not. It was pretty rare to even need to make a custom footprint. Other than the occasional odd switch or relay, it was all done.

I really need to just get over it though. On the one hand, it seems like none-productive time; like I should be able to get right to schematicing and layouting. On the other hand, It's so common, I just need to see it as no different than any other routing task.

Starting at the top of my BOM, I have:

  • An MCU in QFN format - I modified a symbol and added a custom paste layer to the copper land
  • Two SOIC Mosfet drivers - I modified the symbol on an existing footprint
  • Some Mosfets in a PowerQFN package - Made a complete custom footprint
  • A Mosfet in SOT-23 package - Who hoo! I found a workable part in the library
  • Some Power Schottky diodes - custom copper land

Custom footprints

I have another Schottky, some TVS diodes, LEDs and a bunch of passives that came straight out of the library. It's certainly not everything that needs footprint work, but with so many variations of the more complex parts these days, it safe to assume that any SMT project will require a fair amount of library work. It's just the way it is.

Duane Benson
It's a pain but at least it's not as bad as 11811 has it

"Shrinky Dink"

I had some "Shrinky Dinks" when I was a kid. Amazingly you can still buy them. You can also use that concept in your prototyping. I did that recently. I have a robot board design that I'd like to shrink about in half and add in a LiPoly charger chip. Most of the design came from something I had built previously, but the charger chip was new to me as was the compression needed to meet my size goals. Sadly, you can't just put your PCB in the oven and have it shrink like a Shrinky Dink. Maybe if you could put stretchy copper traces on it so they wouldn't peel of while the substrate shrinks...

The charger comes in both DFN-10 and MSOP-10 packages and the MCU comes in SOIC and QFN packages. The QFN is the 44 pin version while the SOIC is the 28 pin version of the chip. Same core. Just more I/O.

LBDC Li LBDCmini pRather than test my ability to shrink and the use of the LiPoly charger at the same time, I added it into the original design without changing the size. There's much more room for probing or even for adding test points if I needed them. Once that design checked out okay (which it did), I just went into the schematic editor, changed the SOIC to the QFN package, the MSOP to the DFN and most of the passives to 0402 packages. I really didn't have to make any changes to the schematic.

That almost worked perfectly. The 28 pin MCU doesn't come in a variant with a QFN package, so I couldn't just change the package type in the schematic editor. I had to delete the SOIC version, place and wire in the 44 pin QFN variant. I made a few other changes too. I added in a QFN packaged RS232 driver and a hard power switch. In the original, I had envisioned a soft power switch but I changed my mind. I also had to modify the library parts to make sure that the solder paste layer on the QFN and DFN parts fit our guidelines. Lastly, I removed some LEDs that I only had on the board for debugging purposes.

The most important two considerations were watching out for physical part interference and getting the paste layer correct on the QFN/DFN parts.

Duane Benson
It's the size of a small walnut

Oh MSOP, My MSOP

LiP DFN unstuffedIn the land of protorypes, sometimes "close enough" is good enough. That can save money on PC boards and assembly when a particular package version of your part is out of stock. But, it's not universal. Sometimes you can't go that way.

I've got an MCP78338 Li Poly charger chip. It comes in 10-DFN and 10-MSOP packages. I originally used the MSOP version on my first PCB pass. Everthing worked just fine, so I re-layed out the board to be about half the area. That meant that wherever possible, passives went from 0603 to 0402 and chips went from whatever to QFN/DFN pacakges.

LiP MSOP on DFN padUnfortunately, the DFN package Li Poly charger seems to be out of stock with long lead times. That got me looking at my options. Option 1, would of course be to just wait. Option 2 would be to re-lay out the board for the MSOP part in that space. Option three is to use the "we'll make it fit" mantra. There are no gurantees at this point, but sometimes it's worth a try.

But... Twas not to be. If you look at the second image, you can see that the footprint of the MSOP part leads is wider than the land pads for the DFN. I suppose there are still a few really messy and potentially expensive options You could solder a small wire on to the pads, sticking out from the pads, effectively making them big enough to accomodate the chip. Very ugly, but might work. Probably too spendy though.

Duane Benson
Carpe DFN

QFN Stencil Gerber

In the previous epside, Wally’s attack on Dilbert’s kingdom prompts Ratbert to perfect an “N”-Ray, to be discharged from a powerful Nullitrion, to neutralize and render useless Wally’s power plant. Dilbert tells Dogbert the Nullitrion can best be directed against Wally’s palace from the Devil’s Dome, in the Land of QFN segmented stencilThe Dead. Wally learns of their plans, and his soldiers plant a powerful time bomb on the Devil’s Dome, but are promptly captured by Pointy Haired Men. Dogbert and his party land, unaware of the bomb and the Pointy Haired Men who are watching and….

As we re-join our intrepid heros, you can see, circled in red, what the custom QFN stencil layer, from the previous episode, will look like in the Gerber file. Obviously the stencil cut outs will look like this too. Except they won't be green. These format cut-outs will deposit the recommended 50 - 75% paste coverage in the center pad of the QFN leading to a good solid solder joint.

Stay tuned for next week's episode where Dogbert assists Dilbert in assaulting the manufacturing warehouse of Devil's Dome to recover the missing 0402 bypass capacitors.

Duane Benson
Azura, Queen of Mars, ordered the Russian Phobos-Grunt probe to be disabled by a ray-beam