Speaking of Small Packages...

T'was a a dark and stormy night when the news came through. Joe Layout had been both dreading and preparing for years. But it had always been little more than rhumors from a far off land. It was a looming threat, always dancing in the distance, but never quite real.

Until now. 1.27mm, 1.0mm, 0.8mm, 0.5mm, 0.4mm... and now... drum roll please 0.3mm pitch. I just got Shrinking BGA pitchan email announcing an Amkor 8 x 8mm 368 ball BGA at 0.3mm pitch. Yikes.

There's still some controversy over the best way to make a 0.4mm pitch BGA land pattern. Some say says you need to use solder mask defined pads. Some say you still need to use the non-solder mask defined pads. Now we throw something 25% smaller into the mix.

The image isn't to exact actual scale - because I don't know how big your monitor is - but the parts are in relative scale from 1.27 pitch to 0.3 pitch.

Duane Benson
If you can't see it, you shouldn't eat it

And Another Footprint Thing

Footprint wrong zero When you are creating a footprint in your favorite CAD program, or reusing someone else's footprint, double check the zero orientation. This post discusses the IPC-7351 specified zero rotation orientation.

This picture on the left shows a library component with the improper zero rotation orientation. Your centroid file will never be correct if you start from the wrong point.

IPC-7351 states that the LED should be oriented horizontally and the cathode (pin 1) should be to the left. Obviously, vertical and cathode up is not the same thing as horizontal and cathode left. If it's obvious, why do I feel the need to state it? I don't know. I just do.

Duane Benson
Red is gray and Yellow white
But IPC decides which is right

How to Build a footprint

Well, not really how to build one in a technical sense, but some thoughts on how to better ensure that you get it right. In theory, it shouldn't be that difficult. You download the datasheet and build the land pattern based on the information in the datasheet. That usually works, but not always.

I had a thru-hole battery holder that didn't match up with any of the land patterns in my library, so I modified one that was close. That worked mostly okay, but there was one measurement in the data sheet that was a little ambiguous. I ended up with the mounting holes being off by a millimeter or so. Not too much, but enough to make the fit difficult.

I went in and shifted the leads over by the same amount, used it again, got another PCB fabbed and discovered that I had shifted the pins the wrong way! Then it hit me. In the first application, I had the battery holder on the bottom side of the PCB but I had looked at it through the mounting holes from the top side of the PCB. D'oh! One reason why I'm not a professional designer.

The other part was a little tiny SMT trim pot. Since there are pretty close to a million different little trim pots, the likelihood of me finding an exact match in my CAD library was precisely zero. I didn't want to Gieger VR mistake close re-invent the little zig zag resistor symbol, so I just found a part that looked the same. Well, it was almost the same. The footprint I found is for a 4mm x 4mm part and the part I ordered is 3mm x 3mm. That's a tiny trim pot. Somehow, when looking at the datasheet, I got the measurements wrong. Once the part came in the mail, it was quite obviously too small.

The pad pretty much ends right at the edge of the trim pot. We won't be able to reflow that part. No solder paste would be touching the pads on the trim pot. I'll see if our guys on the floor can figure out how to get the thing soldered on there. If they can't, I'll need to look for a larger part to put in it's place.

Fortunately, I physically looked at the part and the PCB before assembly. Unfortunately, I got the measurements wrong. If at all possible, get some sample parts before you order your PCBs. Then you can print out a 1:1 image of your PCB and lay the parts out on it. That would have saved me in both of the above cases.

Duane Benson
Is it "datasheets" or "data sheets"?

Package Variants

Cap under connector footprint Here's another issue we see from time to time involving the old, familiar, 0.1" pitch headers. Break away header When initially laying out the board, the footprint for the break-away header is used. It's small and easy to use. The headers are cheap and easy and you don't need to stock a bunch of different pin-counts.

That's all fine and dandy until the next rev of the prototype when you decide to change to a shrouded header for the additional reliability and pin protection afforded by it. When making that change, don't forget that the footprint with the shroud may very well be bigger than the break-away footprint.

Shrowded header In this particular case, it wouldn't have mattered except for the capacitor that ended up under the shrouded header.

Duane Benson
Get out of my cap's space, man

Day two. Custom parts

Moving on from where I left off a few days ago... I was planning on using the PIC18F2320, but in poking around, I found that the PIC18F2321 is about $3.00 less expensive in small quantities. I'm not entirely sure why. Their virtually identical. The 2320 does have two 8-bit timers instead of one in the 2321, but I haven't spotted any other differences that would matter to me in this case. The 2321 has lower sleep and idle currents but I don't think that matters in this application either.

PCB123 PIC partial sch PCB123 doesn't have the 2321 in its library. I could just use the 2320 part, but to get full use out of the pricing and availability features, I'll have to customize the part so that the BOM tool can find it at DigiKey.

I had the "place component" box up already, so I just clicked on "manage Parts" and started filling in the information in the middle column of the dialog. The I clicked the "Select Simple" button, searched on "2320" and selected the symbol for the PIC18F2320-I/SO. So far, so good.

PCB123 manage parts dialog Now, the question is: do I select "Apply Changes" or "Create a New Part"? This would be easier if I actually looked at the documentation or something, but am I doing that? Of course not. I'm going with "Create a New Part." Oops. Needed to select or generate the footprint first. Do that and search on "SOIC" and pick out an SOIC28, "Create New Part" and save it in a Library. I picked "Microchip."

Done. Now when I go back to the Insert / Add Part function, I search on PIC18F2321, and there it is. Apparently, I did it right, because the BOM tab will find it and show price and availability at DigiKey.

Duane Benson
And, today, it's not just a rain cloud, but a full one

 

Centroid / XYRLS / Pick and Place

Call it what you may, but surface mount assembly robots need this magic file to determine where to place your components and how to orient them. We call it a Centroid. Others may call it something else, but it's all basically the same. In our case, the basic format is comma delimited, in mils:

Ref designator,     Layer,     LocationX,     LocationY,     Rotation
    C1 ,                       Top ,           0.5750  ,       2.1000  ,           90

That's not too difficult. Most CAD programs will automatically create this file for you. Eagle doesn't natively, but we have a ULP to do it for you in Eagle (Downloaded here). Again, no problems here. Mostly...

I say mostly because, at this point, you are at the mercy of the person who created the CAD library part. Provided they center the origin and follow the IPC for orientation, everything should come out just fine. Unfortunately, we do find parts that don't follow those rules. We'll do our best to catch and correct such things here, but for maiximum reliability, check you library components to make sure. We find the problem crops up most commonly with passives.

IPC says that zero orientation for two pin passives is horizontal, with pin one on the left. For polarized capacitors, pin one is (+). For diodes, pin one is the cathode. They note that pin one is always the polarity mark pin or cathode. Pin one is also on the left for resistors, inductors and non-polarized capacitors, but left vs right doesn't matter so much with non-polarized things. The most common orientation error we se is to have the "zero rotaion" 270 degrees off from the IPC standard.

Every now and then we'll find that someone assumes that since usually the anode on a diode tends to be on the positive side, that the anode should be pin one. Nope. Nope. Nope.

Duane Benson
Is it pulling electrons or pushing holes?

Virtual Questions

Here's a question I received during my Virtual-PCB chat session back on March 8th.:

From Jack: "Here's my default question (as a designer), what is your biggest headache from designers?"

My answer: "Probably the most common difficulty has to do with CAD library footprints. That's really a headache caused by the CAD software"

Jack: "ha, well it seems like the majority of problems stem from incorrect library fottprints (including mask, silk, etc.) maybe we just need to get together and make a universal library for everyone, eh?"

I've been hearing a lot of lamentations over the last year regarding CAD library footprints. It seems to be one of those issues that has been around long enough and is now reaching a criticle mass of attention. There are a few partial solutions in the works. PCB123 is trying to make the most complete set of libraries possible. NXP has been supplying factory libraries to PCB123. There is the IPC-7351B land pattern generator. Some manufacturers give good footprint guidance at least (Ti, Freescale). Sparkfun and Adafruit are supplying libraries for most of the components that they use and sell.

All good things and all in the right direction, but still not a consolidated univeral effort. There's also talk flaoting around of croudsourcing libraries. I can see that working for Eagle and a few other packages, but I question whether large companies using expensive CAD systems would rely on such a thing. I guess that all means that we don't have a solution in sight, but if the problem is getting broad-based visibility, than maybe someone will come up with an actual complete answer.

Duane Benson
Esperanto for CAD libraries

Who's Right?

Jack commented on my prior post, An Unanswered Question. His point was that instead of just saying "check with the manufacturer's datasheet", like I so often suggest when talking about land patterns, I should give more credit to the IPC and understand that many datasheets are the result of less than thorough study. That's a very good point.

The challenge is that some manufacturers do a great job of figuring out how to use their packages, such as Ti with their Package on Package (POP) OMAP, or Freescale with some of their ZiBee chips. u-blox has done a good job of documenting paste mask requirement for their castelated mounting configuration too. On the other hand, some other manufactures seem to have just cut and past part of an old data sheet without even giving it a once-over. As Jack mentioned, with some of the newer packages, IPC doesn't always have the data yet. I didn't see that IPC-7351B covers 0.4mm pitch BGAs yet. It does do a good job of covering the need to segment the solder pastes stencil over a QFN center pad, which I also have written about here more than a few times.

I guess my thinking is that the part manufacturer should be the best equipped to tell us how to use their components. To Jack's point though, that would be in an ideal world. But, reality rarely holds up to the ideal. Some manufacturers do quite well and some seem to virtually forget that they even made the part once it's out of the development labs. IPC does a very good job but isn't necessarily the most current. Then, of course, some manufacturers don't follow the IPC guidelines. Board fab houses and stencil makers have a lot of good data too, but also aren't always up to date (nor are assembly houses).

I suspect that I get a little cynical on this subject in general because we see so many diversions from standard come through our shop. The designers, by and large, would much prefer to lay out their boards for greatest manufacturing success, but so many of them have a very difficult time finding the necessary data.

In some ways, I think the environment is getting better. More people seem to be aware of the need for good standards and to follow those standards. IPC seems to be pretty quick in adding in newer packages. The IPC land pattern generator is a big help. But the proliferation of new parts in new form-factors negates a lot of that gain.

Duane Benson
I'm not convinced that in net, this post has any actual content.

An Unanswered Question

I've been reading through my Virtual-PCB chat session transcript from yesterday. It was a fun session and I have a much better idea of how the virtual shows work now. I think I may just be getting it.

The chat session had a lot of interesting questions and dialog. I did notice, however, that I missed one question and thus didn't answer it. Oops.

Owen asked if I am of the opinion that all footprints should have rounded pads (probably stencil cutouts too) to help with paste release. Sorry I missed your question.

I'm not of that opinion. There are a lot of factors that come out of stencil decisions. Paste release is one of them. There are others, some more important. For example, the shape of a pad and stencil cut out can either encourage or discourage solder balls. The size of the opening can put too much or too little paste on the pad. Wide open cut-outs over heat slugs can cause float.Bad QFN paste w caption

The pads themselves, should follow the part manufacturers recommendation for shape and size. Most  are rectangular. BGAs have round pads. Unless you have a very good and very specific reason, I would not deviate far from the part manufacturer's recommended footprint.

Some of the factors that influence paste release are the stencil thickness, whether it's polished or not, the angle of the cut, ratio  of thickness to width and paste properties. How long the paste has been exposed to air as well as the room's temperature and humidity can also have an impact. Lot's of permutations.

If you're reading this Owen, Sorry I missed your question in the chat. I hope this answers it for you.

Duane Benson
If it's going to the EU, make sure it's peanut butter free.

Cute Wiring

Yesterday, I wrote about my foibles in ignoring my own advice. As SiliconFarmer pointed outRework 002 cropped over on Twitter, it's not just something you need to do when you're re-purposing a close land pattern. Sometimes even the "correct" pattern can have the wrong drill size or a few mixed up pins.

The bottom line is that if you want to reduce the chance of scrapping some expensive PCBs, or having spots that look like what I did (on the right here), check your land patterns.

I couldn't find my wire-wrap wire late last night, so instead, I used the leads from old thru-hole resistors. It's kind of a mess, but I do like the hatch-markish look that I gave it.

Not to shift any blame off of myself, but I do find it quite annoying when a part falls into such a common standard configuration, as in three-terminal regulator, but the manufacturer picks a different pin-out.

[Note that this is rework I did myself at home. The folks here at Screaming Circuits do  much, much higher quality work.]

Duane Benson
The problem with unwritten rules is that they're unwritten