Creating a QFN Footprint - the center pad

I've written bits and pieces about creating footprints in Eagle and a lot about what the QFN solder paste layer should look like, so maybe it's time to connect the two dots. I'm using Eagle CAD here, so your process will likely be different unless you're using Eagle, but the concept should be the same. This process takes place in the package section of the Library editor. I'm assuming that you're already part way through and just need to put in the center pad.

Center pad Center pad position and sizeFirst, add the center pad to your QFN using the "Smd" tool and set the size based on the recommended pad size specified in your part datasheet.

The center of the pad should be located at 0,0 unless you have a QFN with odd shaped or multiple pads.

Make sure you un check the "Cream" box in the lower left corner as we'll be doing that manually.

After the pad is there and sized right, you need to add in the cream (solder paste) layer. You'll be drawing the cut-outs in the stencil with the rectangle tool. Use the rectangle tool to draw the stencil cut-outs. Set the rectangle to the "Cream" layer. In my installation of Eagle, the Cream layer defaults to layer 31.

Most parts should get 50 - 75% paste coverage to prevent floating (read this for more details). If your Stencil rectangle Stencil rectangle position and sizepart datasheet gives a specific number, use that. However, in my experience, most part datasheets just show a wide open stencil with 100% paste coverage. Unless you have good reason, don't do that.

Without any specific guidance, I usually aim for about 70%. In high volume manufacturing situations, the manufacturing engineers will likely spend time tweaking the coverage, but it'll be close and for a prototype, 70% is a good number.

Duane Benson

More cautionary tails

I recently wrote about the horrors of LED marking variations. Unfortunately, LEDs aren't the only place to find inconsistencies in our world. Another part to keep a close eye on is the ubiquitous three-terminal voltage regulator. For just short of a million years, pretty much all three-terminal voltage regulators followed the 78XX convention. Lm7805 convention
It is not completely universal though. Is saying "completely universal" repetitive and redundant? There are some regulators that divert from convention in thru-hole and in SMT form-factors. Despite the overwhelming prevalence of the 74XX pin-out, you may find some parts that dispense with convention and can bite.

Take the LM1085, low drop out (LDO) regulator, for example. It looks, for all intents and purposes, to be a standard TO-220 or TO-263 three-pin regulator. You'd look at it and assume that it's a direct replacement for any old 75XX series. But, rather than In-Ground-Out, it's pinned as Ground-Out-In. The LM1117T is the same.

Mismatched SOT-223You might think: "Of course, it's different, the part numbering doesn't follow the 74XX number scheme." That sounds logical until you look at the LM2940. It follows the 74XX pin convention, as does the MIC39100. It's not the LDO specification that justifies change the pin-out either. The LM2940 is also an LDO.

Unlike the LED polarity issue, this one isn't as likely to bite you during assembly. The SMT regulators can only go onto the board one way. If your CAD library footprint is correct, it will be assembled correctly. The thru-hole can be easily reversed though if your silk-screen isn't clear. Marking pin 1 on the board (and checking the CAD footprint) is the recommended approach.

Duane Benson
In the land of the insane, only the sane are crazy.

How NOT to mark a diode

A while back, I wrote about ambiguity in the markings on electrolytic capacitors. In doing that, I cobbled together a little image to illustrate how surface mount electrolytics are marked. Take a look at the image below:

Capacitors

Note how I have illustrations showing how tantalum and metal can electrolytic capacitors are marked. Further note, that I have the capacitor schematic symbol there too. Finally, note that all three are oriented in the same direction. I have the plus side on the left and the negative side on the right.

Now for comparison, I have two nearly but not quite identical 0805 SMT LEDs in the following photo. Look at the photo of the two LEDs below. I did not alter this image in any way. The mark on the LED image could be interpreted either way. The bump could be seen as pointing toward the cathode, since it is the cathode mark. Or, The line could be on the side of the cathode. That would make sense because the line on the schematic symbol represents the cathode.

There's one final thing to look at - wait for the punchline:

Backwards markings

The punchline is that the  cathode is on the left on both of these LEDs in the photo. I have empirically determined that to be the case, both by putting them on a board and by subjecting them to a diode checker. Punchline number two is that both are correct according to their respective datasheets. The following excerpts from their respective data sheets shows the problem.Reverse marked LEDs

And, drum-roll please ... The third punchline is that both of these parts are from the same manufacturer!

If your board uses SMT LEDs, send the datasheet with your assembly order. Include it as a PDF in your files set. It would also behoove you to double check your CAD library footprint against your specific part number datasheet. IPC says the cathode is pin-one and pin-one zero degree orientation is with pin-one to the left.

Duane Benson

Forward, the LED pick and place
Was there a machine dismayed?
Not tho' the engineers knew
Someone had blundered
Cathodes to right of them
Cathodes to left of them
Cathodes behind them
And I cannot reason why

More Beagle CAD Paws

Continuing on from my last post...

As I said, I do everything I can to avoid re-using the package footprint when adding the the parts library in Eagle CAD. The schematic symbol can be a different story though. It still takes a lot of caution, but it's less risky (in my opinion) than reusing the package footprint.

Eagle version 6 made some improvements in the way copy and paste works. It's still a little different from your typical word processor, but it's not that difficult.

Eagle footprint menu bar 3 buttonsBut before I get to that, I want to mention one item that caused me a fair amount of confusion early on. And that's the way all of this fits together. There are three buttons you will need to worry about. From left to right in the green oval are; the device, the package footprint, and the schematic symbol. In my last post, I pointed out the package footprint and today I'm talking about the schematic symbol.

Really, you only build the footprint and the schematic symbol. Then you connect the two up to create the devices. And, you can build the footprint or schematic symbol in either order, but you have to have them both before the last step (the icon in the green oval with four little AND gates).

If you're using a chip that comes in a couple of different packages (e.g. DIP28, SOIC28, TSSOP28) you most likely only need to make one schematic symbol. You can make the multiple footprints and connect them up in the device section as different variants of the same part.

There are a few exceptions though. Sometimes QFN, QFP or BGA parts will have a few extra pins. In those cases, it may be better to create a different schematic symbol.

Duane Benson
This solder paste stencil glows blue when goblins are around

Beagle CAD paw prints

Unfortunately, I can't generically hand out Eagle CAD QFN footprints without knowing the specific part, but I can illustrate the areas I initially had difficulty with. All of the traps that used to get me seem blindingly obvious now, but they weren't when I first tried to make my own library parts.

The very first thing I would recommend is to make your own library file. When I started in with my own parts, I would just add them to an existing library. For example, I'd put a new Microchip PIC processor into the "microchip.lbr" library. It seemed the logical choice because there are other similar parts to start with. But, when it's time to upgrade, migration of those custom parts becomes a nightmare. So, now all of my custom parts go into "dfb-parts.lbr."

Eagle footprint menu barSpeaking of modifying existing parts, another recommendation I have is, except for parts where the package footprint is EXACTLY the same, start from scratch with the package footprint.

The schematic symbol is easier to reuse - just make sure you have the right pins in the right place - but subtle differences in the copper footprint can have a big difference at the assembly stage.

Datasheet footprint page land patternI also don't try to hand size and hand position the pads on the silk screen. Start by just putting a pad in the footprint area. The use the Properties/Info button (the big "i") and use the dimensions given in the data sheet to enter the size and position by number.

Look for the "recommended land pattern" or similar diagram toward the end of the component datasheet. Entering the numbers in the Properties/Info box will bypass any position precision issues. Just make sure that you use the right units (i.e. metric to metric).

Stay tuned for the next installment.

Duane Benson
World to end at 9:30. Details at 11:00

Let's Get Small, as in 0.3mm

Not long ago, I wrote about a 0.3mm pitch wafer scale BGA we received and were asked to place. The gist of that article was that those parts are very small and we d0n't yet have a process that we feel will give the quality, reliability and consistency that we want to deliver. That means officially, we don't, at the moment, support that form-factor.

However, as it turned out, we went ahead and built it and the x-rays all said it looked good. Whew! We still don't officially support it, but we're working on it. If you have one of these things, you can always give us a call and see if it's something our manufacturing engineers are comfortable with. If they say "sure, send it in", It will be a non-standard, essentially, experimental, operation so our normal guarantees won't apply. It will be "we'll do our best."

But that's not the point. The point is that there are still a number of unanswered questions with 0.4mm pitch, and now we have a smaller one??!!

I've only seen 0.3mm pitch in two places: some data from Amkor, and the data sheet for this part.The part in questions is a Maxim MAX98304 Mono 3.2 Watt Class D amplifier. The entire package is just 1mm x 1mm.

There is still a lot of difference of opinion on solder mask defined (SMD) vs. non solder mask defined (NSMD) at super small pitch like this. For BGAs 0.5mm and lager, the general consensus and IPC recommendation is NSMD. At 0.4mm, the Beabgleboard folks at Ti recommend SMD to reduce bridging. But I've had other folks say they get good results with NSMD. For 0.4mm, we've had best results with SMD. It's more than just that though, you also need to religiously follow the manufacturer's recommended pad sizes and such.

Shrinking BGA pitchFor this part, the datasheet shows the pad size (0.18mm), but doesn't cover the SMD vs. NSMD question. Instead, it refers to a Maxim app note (#1891) for that bit of information.

Of course, this is where it gets sticky. That app note, as of this writing, shows 0.5mm and 0.4mm, but no 0.3mm. It does reference IPC-7351, which is a very good thing, but I don't think IPC-7351 has 0.3mm pitch covered yet. Ugh. The 0.3mm part we placed used SMD pads.

Duane Benson
It's not just Facebook where you can designate something: "It's complicated."

 

Missing Mars Probes

Back in ancient times when multi-legged beasts ruled the earth, there were a lot more standards. Or maybe there were just fewer total things resulting in fewer total variations, which looks like more standards.

In any case, if you got a 7408 IC from one manufacturer, it was pretty much equal to a 7408 from any other manufacturer. Even connectors were more or less standard. If you plugged in one PCB mount DB25, you could plug in just about any PCB mount DB25. There were variations, just not as many as now. Today, though, there are a very large number of variations to a standard footprint. For example, while the pin footprint on most Ethernet jacks matches, I've probably seen a dozen different arrangements of mounting and alignment pins.

Another area that can throw monkey wrenches all over is the dreaded metric v. SAE units.

Metric vs imperial

This seems to pop up most often with connectors, as in this image, but it occasionally shows up on other types of parts as well. The footprint here is for a .1" (2.54mm) pitch connector. The connector has 2.5mm pitch. It would be fine for three pins, maybe four or five. But beyond that, it's just not going to fit.

I don't really understand the logic in 2.5mm pitch. If .1", which equals 2.54mm weren't such a ubiquitous standard, 2.5mm would make sense, but as it is, it's just too close. It's close, but they aren't the same. 2.5 != 2.54.

Duane Benson
It doesn't seem like much difference in mm, but in beard-seconds, it's 4,000* units off

*By some definitions, including the Google converter, it would be 8,000 units off

 

Via in Big Pads

The answer to the question: "is it ever okay to put open vias in BGA pads?" is simply No. It's no, no, no, no, not ever!!! That makes it easy. No technique to worry about. No tolerances. Nothing. Just don't put an exposed via in a BGA pad. The only option is between the pads, with a complete soldermask dam between the pad and via, or have the vias filled and plated over at the board house. Nothing but metal is allowed on the BGA pad.

Now, other components give you more flexibility and thus require some choices and guidelines. Andy B. asked about large components, such as voltage regulators where the manufacturer has recommended vias to connect the thermal pad to the ground plane, or to additional thermal area on the back side of the PCB.

The easy answer is to just treat it like a QFN and read our various suggestions surrounding that form factor. Here's some. Having the extra room does allow for additional flexibility, but if the vias are open, they still run the risk of sucking solder to the other side of your PCB. You can sometimes get away with really tiny vias, as in here. But it's not best-practice.

It's really a matter of trade-offs. I have seem opinions stating that you should never fill or cap the via because doing so might impede the thermal transfer. Well, power chip manufacturers, you shouldn't rely on unbuildable design to meet product specs. You can fill the vias with thermally conductive material. You can cap the via with solder mask, as in the link I just gave you. Just make the via cap as small as possible - 100 to 125 microns larger than the via.

DFN8 w stop and paste w vias-trFinally, segment your paste stencil layer. If you put solder paste on top of an open via or even on top of a masked via, you can be asking for trouble. In this image, the six vias (which will be capped) are put between the openings of the stencil.

Duane Benson
Tesla says what?

Via in Pad x 8

Via in 8 pin padsHere's an interesting via in pad case. On the one hand, the footprint is very symmetrical and clean looking. On the other hand, it has open vias in the pads.

At first glance, I thought this was a DIP footprint with extra long pads, but it's not. It's for an SMT part. Personally, I would have put mask between the pads. Looking at the rest of the board (not shown), the spacing between pads and mask is pretty wide, so there may be a good reason. I'm not sure though.

Definitely, though, I would not put the vias in the pads like that. Those open vias will cause solder to flow down to the other side of the board, make a mess there and leave the chips without sufficient solder.

Duane Benson
Sucking solder through a straw - or via

How not to treat your BGA friends

Over the years, most of what we see are good PC boards. But some standout in the other direction as examples of what not to do. Some didn't make it through the board house alive. Some were unknowingly rendered useless in layout and some were just held on to too long or not stored properly.

Large BGA via in padIn this first image, we see a guaranteed not to work example. Open vias in BGA pads will ruin your whole day. And you can't just cap them with solder mask either. For BGAs, the only two via solutions are to have them filled and plated over at the board house, or not be in the pads at all. Having a via in a BGA pad is like trying to cook scrambled eggs over a camp fire without a skillet. The eggs will in fact cook, but they'll be all mixed in with the fire and coals and stuff and you won't be able to eat them.

BGAB mask issuesThis next guaranteed not to work example shows a valiant attempt at keeping the vias out of the pads. But, as we used to say on the playground: "close only counts in horseshoes and hand grenades - and sometimes atom bombs." Here on the right, first, the mask registration is way off. That's not good but doesn't necessarily spell BGA death on its own. What will kill this assembly is the clear metal path between some of the pads and the vias. You need to have some soldermask blocking the metal path between the pad and the via. If you don't, it's almost as bad as putting the via in the pad. This board has a few places where there is a thin solder mask dam between the via and the pad. But, in the cases where there is no mask, the solder and solder ball will most likely migrate over to and down through the via.

Duane Benson
Close might also count with badgers.