Screaming Circuits: Top-ten PCB Assembly tips for 2016

PROTOTYPE AND SMALL VOLUME
PCB ASSEMBLY MADE EASY

Top-ten PCB Assembly tips for 2016

SCmultiboard layoutI've already written my top-ten predictions for the coming decade, in this blog post. But, while predictions might be fun to muse upon, they really won't help you get your job done. My top-ten8 pieces of PCB assembly advice for the coming year should make up for that.

000

Before you even start component selection, give thought to the design scale. What's more important, board size, cost, or time to layout? A large board will be easier to route, but will cost more for the fab. A smaller board will cost less for the fab in terms of square inches, but may cost more due to extra layers, and may take longer to layout.

001

Factor in the cost of component size. For passives, roughly 0603 size parts will probably be the sweet spot in terms of lowest cost. The 0603 is also a good size for overall handling. We'll assembly down to 0201 parts, but not all manufacturers will. 0603s are also easy to rework, and are manageable if you feel the need to hand solder a few.

010 

Check out any exotic or very new parts. Some parts, these days, are only available in super small wafer scale BGA, or small QFN form factors. Take a look at your integrated circuits and make sure they come in packages that you're comfortable working with.

011

Check for sole-source parts, or low-availability parts. The last thing you want is a completed design that's sitting around waiting for one long-lead time, sole sourced part. If a sole-sourced part is at risk for availability, you might want to find something similar and more available.

100

Don't forget manufacturing thermal concerns when laying out your board. Very large parts next to very small parts can cause problems. The large parts will act a bit like a heat sink and may prevent the solder for the small part from melting properly. The same thing can happen with internal copper planes that overlap on half of a small part, but not the other.

101

Give extra care to the clarity of reference designators and polarity markings. Make sure that it's very clear which designator goes with which part, and that there isn't any ambiguity in polarity markings. Take special care with LEDs, as manufacturers sometimes swap polarity markings between the anode and cathode - yes, the exact same mark can mean anode on one LED and cathode on another. Also, do your best to keep reference designators off of vias or any other spots that might break up the text.

110

When you're ready to send your project our to be built, give your files a double check to makes sure you have the correct versions. bills of materials are especially susceptible to having bits of information out of date that might cause delays.

111

If you're sending in a parts kit, double check that you have all of the parts, and that you have part number and reference designator on the individual part bags.

Manufacturing is just putting parts on boards, but it's doing so with a whole lot of variables. A few extra checklist steps can go a long way toward removing variability of those variables.

Duane Benson
I am one with the net force. The net force is with me

Comments

Post a comment

If you have a TypeKey or TypePad account, please Sign In.

« Suspect Thru-hole Packaging | Main | Start the Year Right, without PCB placement overlap »