More cautionary tails

I recently wrote about the horrors of LED marking variations. Unfortunately, LEDs aren't the only place to find inconsistencies in our world. Another part to keep a close eye on is the ubiquitous three-terminal voltage regulator. For just short of a million years, pretty much all three-terminal voltage regulators followed the 78XX convention. Lm7805 convention
It is not completely universal though. Is saying "completely universal" repetitive and redundant? There are some regulators that divert from convention in thru-hole and in SMT form-factors. Despite the overwhelming prevalence of the 74XX pin-out, you may find some parts that dispense with convention and can bite.

Take the LM1085, low drop out (LDO) regulator, for example. It looks, for all intents and purposes, to be a standard TO-220 or TO-263 three-pin regulator. You'd look at it and assume that it's a direct replacement for any old 75XX series. But, rather than In-Ground-Out, it's pinned as Ground-Out-In. The LM1117T is the same.

Mismatched SOT-223You might think: "Of course, it's different, the part numbering doesn't follow the 74XX number scheme." That sounds logical until you look at the LM2940. It follows the 74XX pin convention, as does the MIC39100. It's not the LDO specification that justifies change the pin-out either. The LM2940 is also an LDO.

Unlike the LED polarity issue, this one isn't as likely to bite you during assembly. The SMT regulators can only go onto the board one way. If your CAD library footprint is correct, it will be assembled correctly. The thru-hole can be easily reversed though if your silk-screen isn't clear. Marking pin 1 on the board (and checking the CAD footprint) is the recommended approach.

Duane Benson
In the land of the insane, only the sane are crazy.

How NOT to mark a diode

A while back, I wrote about ambiguity in the markings on electrolytic capacitors. In doing that, I cobbled together a little image to illustrate how surface mount electrolytics are marked. Take a look at the image below:

Capacitors

Note how I have illustrations showing how tantalum and metal can electrolytic capacitors are marked. Further note, that I have the capacitor schematic symbol there too. Finally, note that all three are oriented in the same direction. I have the plus side on the left and the negative side on the right.

Now for comparison, I have two nearly but not quite identical 0805 SMT LEDs in the following photo. Look at the photo of the two LEDs below. I did not alter this image in any way. The mark on the LED image could be interpreted either way. The bump could be seen as pointing toward the cathode, since it is the cathode mark. Or, The line could be on the side of the cathode. That would make sense because the line on the schematic symbol represents the cathode.

There's one final thing to look at - wait for the punchline:

Backwards markings

The punchline is that the  cathode is on the left on both of these LEDs in the photo. I have empirically determined that to be the case, both by putting them on a board and by subjecting them to a diode checker. Punchline number two is that both are correct according to their respective datasheets. The following excerpts from their respective data sheets shows the problem.Reverse marked LEDs

And, drum-roll please ... The third punchline is that both of these parts are from the same manufacturer!

If your board uses SMT LEDs, send the datasheet with your assembly order. Include it as a PDF in your files set. It would also behoove you to double check your CAD library footprint against your specific part number datasheet. IPC says the cathode is pin-one and pin-one zero degree orientation is with pin-one to the left.

Duane Benson

Forward, the LED pick and place
Was there a machine dismayed?
Not tho' the engineers knew
Someone had blundered
Cathodes to right of them
Cathodes to left of them
Cathodes behind them
And I cannot reason why

« December 2012 | Main | March 2013 »